
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013                                                            1840 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Graph Coloring Algorithm using Adjacency 
Matrices 

M Saqib Nawaz1, M Fayyaz Awan2 
 

Abstract- Graph coloring proved to be a classical problem of NP complete and computation of chromatic number is NP hard also. Graph coloring 
with 2 colors exhibits polynomial time behavior whereas optimal solution for whether a graph is colorable for k >2 is NP-complete. An algorithm for 
graph coloring is proposed in this paper. Algorithm uses adjacency matrix for coloring the vertices of given undirected graphs.   

Index Terms— Adjacency matrix, Chromatic number, Graph coloring, NP, Polynomial time, Vertices. 
 

——————————      —————————— 

1 INTRODUCTION                                                                     
RAPH coloring is an interesting and challenging problem 
in graph theory. Graph coloring is an assignment of a 
‘color’ to the elements of graph. In vertex coloring, each 

vertex of the graph is colored such that no two adjacent verti-
ces has the same color. In edge coloring, each adjacent edge is 
colored with different color. Problem of graph coloring is de-
ceptively simple. The main idea of coloring a graph is straight-
forward, and it seems that graph coloring is an easy problem, 
but it is not. A simple algorithm for graph coloring is easy to 
describe, but potentially extremely expensive to run. Graph 
coloring problem is known to be NP-complete [1]. Problems 
are either classified in P, NP or NP-Complete (NPC) classes 
[8]. Class P consists of those problems that are solvable in pol-
ynomial time. NP class consist of those problems that are veri-
fiable in polynomial time. Any problem that belongs to P also 
belongs to NP. A decision problem X’ is said to be NP-
complete if X’ is in the set of NP problems and also in the set 
of NP-hard problems. The abbreviation NP refers to 
"nondeterministic polynomial time."  

There is no known algorithm which will color optimally all 
the vertices of the graph for every graph in polynomial time. 
Optimal solution to graph coloring problem may be found by 
determining minimal colorings for the corresponding graphs.  
Unfortunately, this may not always be achieved in a reasona-
ble amount of time. 

The chromatic number of a graph is the least number of col-
ors needed for coloring the graph and is often denoted χ(G). A 
graph is k-colorable if graph can be assigned a k-coloring, and 
graph is k-chromatic if graph chromatic number is exactly k. If 
χ(G)  = 2 then graph is bipartite. Chromatic polynomial can be 
defined as a function P(G, k) that counts the number of k-
colorings of G. For a given graph this function is polynomial 
in k. With chromatic polynomial, chromatic number χ(G) is 
the smallest integer (positive) that is not a root of the chro-
matic polynomial.   

χ(G) = min{k: P(G,K) > 0 }. 

The problem of finding the chromatic number and a prop-
er coloring of a graph is of great interest for its widespread 
applications in areas such as scheduling and timetabling and 
particularly in telecommunications. Algorithm which is de-
scribed in this paper uses adjacency matrix for vertex coloring 
of a graph.  

2 COLORING A GRAPH WITH K COLORS 
A graph G is k-colorable if it can be colored using k or fewer 
colors. Task of closely approximating the chromatic number of 
a graph is NP-complete [5] and thus virtually impossible to 
accomplish for large graphs. Consequently, approximations of 
upper and lower bound results established for χ (G) have gen-
erally been crude and of little practical use [1, 6]. Polynomial 
time algorithm to determine whether a graph is 2-colorable or 
not is discussed in this section along with greedy algorithm 
which is an approximation to optimal solution. 
 
2.1   2-Colorability 
Efficient and simple algorithm exist that determines whether a 
graph is 2-colorable and if a graph can be colored with two 
colors  then this algorithm assigns colors to its vertices on 
breadth-first search basis. Assign suppose ‘blue’ to the first 
layer, ‘red’ to the second layer, ‘blue’ to the third layer, etc. Go 
over all the edges and check whether the two end points of 
this edge have different colors. Algorithm time complexity is 
O(|V|+|E|). The last step is used for correctness of the algo-
rithm. However for k > 2, the problem is more difficult. 
Whether a given graph is k-colorable for k > 2 is an NP-
complete problem. The first algorithm that can be thought of is 
brute-force search where every possible assignment of k colors 
to the vertices is considered, and check whether any of them 
are correct. This is done in the order of O((n+1)! so impractical 
to use. Therefore an optimistic algorithm is required for graph 
coloring. 
  
2.2   Greedy Algorithms 
Greedy algorithm does not give the lowest k for which there 

G

 

———————————————— 
 1 M Saqib Nawaz is currently pursuing MS degree program in Computer 

Science in University of Sargodha, Pakistan. E-mail: 
saqib_dola@yahoo.com. 

 2 M Fayyaz Awan is currently pursuing MS degree program in Computer 
Science in University of Sargodha, Pakistan. E-mail: uos_pk@yahoo.com. 



International Journal of Scientific & En1841gineering Research, Volume 4, Issue 4, April-2013 1841                                                                                        
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

exists a k-coloring, instead it tries to find a reasonable coloring 
while still being reasonably expensive. Greedy algorithms are 
also known as an approximation algorithm because some 
reasonable solution is fined in greedy algorithm. Greedy 
algorithm proceeds as follows: Consider the vertices to be in a 
specific order v1,...,vn and assign to vi the smallest available 
color not used by vi's neighbors among v1,...,vi − 1, adding a 
fresh color if needed. This algorithm finds a reasonable 
coloring and is O (|V|+|E|). Problem with greedy algorithm 
is that it does not find the optimal k for which the graph is k-
colorable. In some cases, k can be as high as n/2 when the 
optimal k would be 2. Figure 1 shows this. In figure 1 the left 
ordering leads to a using only 2 colors, and the right ordering 
leads to 4 colors. 

Figure 1. Coloring with left and right ordering 

3 PRELIMINARY DEFINITIONS 
Graph G with vertices (nodes) V and edges E is denoted by 
G(V, E). The adjacency matrix also called as connection matrix 
for a graph with ‘n’ vertices is an n×n matrix whose (i, j) entry 
is 1 if the ith vertex and jth vertex are connected, and 0 if they 
are not [2]. For a simple graph with no self-loops, the adjacen-
cy matrix must have 0’s on the diagonal. For an undirected 
graph, the adjacency matrix is symmetric. 

Figure 2. Adjacency matrix of a graph. 
 

Neighbor vertices are those vertices that are connected to a 
specific vertex whereas non-neighbor are those vertices that 
are not connected to a specific vertex. In figure 2, vertex A is 

not connected with vertex C, D, E and F. It can be seen in ma-
trix as in first row column third (vertex C), column fourth 
(vertex D), column fifth (vertex E) and column six (vertex F) 
values are 0. Vertex C, D, E and F are the non-neighbors (NN) 
of vertex A whereas vertex B is the neighbor of vertex A. De-
gree of a vertex denoted by d(W) is the number of edges con-
nected to a vertex W or the number of vertices connected to 
the Vertex (W). A coloring of G is mapping function f: V→ {1, 
2,…., k} such that f(u)= f(v) if and only if (u, v) Ɛ E. Vertex A 
degree in above figure is 1 and vertex with maximum degree 
is vertex B and F whereas vertex D has minimum degree. 

4 PROPOSED ALGORITHM 
Proposed algorithm uses adjacency matrix to color a graph G 
with V vertices and E edges. G is considered to be an undi-
rected graph. Through adjacency matrix, each vertex neigh-
bors and non-neighbors are found with degree of each vertex. 
Algorithm proceeds as follows:  

Given G(V, E), make an adjacency matrix of the G. Compute 
degrees of each vertex  and assign color 1 to  vertex that has 
maximal degree in G, say X. Assign same color to the non-
neighbor (NN) say Y of X. Find the common vertices of X and 
Y and if these common vertices are not adjacent then assign 
them color 2, else assign them different colors. Now take the 
new NN of X, if this new NN is adjacent to the previous NN 
or to any colored vertex then color this vertex with different 
color. Color common and NN vertices with previous colors 
such that no two adjacent vertices has the same color. If previ-
ous used color violates the rule of graph coloring then assign a 
new color. Repeat this until non-colored vertices equals zero.   

 
 Given a Graph G(V,E): 
 

1. Calculate total vertices n in G. 
2. Make an adjacency matrix of n×n matrix. 
3. Calculate the degree of each node using matrix obtained 

in step 2. 
4. Select the maximum degree node suppose X. Color X 

and its NN suppose Y with same color. 
5. If X and Y has common vertices then color it with color 

different then X. 
6. If common vertices of step 5 are not adjacent then color 

these vertices with same color. 
else color these vertices with different color.  

7. If X has other new neighbor then go to step 8 
else take new NN as the NN of Y and go to step 8.    

8. If new NN and previous NN are adjacent then color new 
NN with different color other then X. 
else color new NN with color of X. 

9. If new NN is adjacent to any colored vertices or to any 
previous NN then color it with different color.  

10. Until non-colored vertices > 1, go to step 5. 
11. return G. 



International Journal of Scientific & En1842gineering Research, Volume 4, Issue 4, April-2013 1842                                                                                        
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

5 EXAMPLE 
Algorithm proposed here is applied on the graph shown in 
figure 3.  

 
Figure 3. Graph with seven vertices. 

 
Graph is undirected and it has seven vertices. So its adja-

cency matrix will be of order 7 × 7. 
 
 
 
 
        M =  

 
 
 
 

Integer number represents color. 1 represent color red, 2 
represent blue, 3 represent color yellow, 4 color green and so 
on. Maximum degree vertex is A. NN of vertex A is vertex D. 
Algorithm will assign color suppose 1 to vertex A and D. 
Common vertices of vertex A and D are vertex B, C and E and 
vertex E is adjacent to both B and C, so B and C will get color 2 
and E will get color 3.  Second NN of vertex A is vertex G and 
G is adjacent to previous NN D and colored vertex B. Assign 
vertex E color to vertex G that is 3. Vertex F is the common 
vertex in A and new NN vertex G. F is adjacent to both vertex 
A and C so assign new color 4 to vertex F. So vertex A and D 
are red colored, vertex B and C are blue colored, vertex G and 
E are yellow colored and vertex F is green colored. Each vetex 
is colored so that it is not adjacent to any same color vertex. 
Graph with coloring is shown below. Graph is colored with 
four different colors.  

Figure 4. Vertex colored graph (1)  

CONCLUSION 
Graph coloring along with classes of P and NP problems are 
an active field of research. Algorithm presented here works 
well for graph coloring and algorithm is based entirely on ad-
jacency matrix for coloring, but still a lot of improvements can 
be done. Proposed algorithm lacks correctness proof. Algo-
rithm along with correctness proof is implementable in 
Matlab. 

ACKNOWLEDGEMENT  
The authors wish to thank Dr. Khalid Amir for his generous 
time and help in in paper preparation. 

REFERENCES 
[1] Aho, A. V., Hopcroft, 1. E., and Ullman, J. D., The Design and Analysis 0f 

Computer Algorithms, (Addison-Wesley, Reading, MA, 1974), pp. 364--404. 
[2] Chartrand, G. Introductory Graph Theory. New York: Dover, p. 218, 

1985. 
[3] J.A. Bondy and S.C. Locke. Largest bipartite subgraph in triangle-free graphs 

with maximum degree three",J. Graph Theory, vol. 10, pp. 477-504, 1986. 
[4] Leighton, F. T. A Graph Coloring Algorithm for Large Scheduling Problems., 

Journal of Research of the National Bureau of Standards Vol. 84, No.6, No-
vember-December 1979. 

[5] Garey, M. R., and Johnson, D. S., The Complexity of Near-optimal Graph 
Coloring, Journal of the ACM, Vol. 23, No.1 (Jan. 1976), pp. 43-9. 

[6] Christofides, N., Graph Theory-An Algorithmic Approach, (Academic Press, 
New York, 1975), pp. 58-78. 

[7] Matula, D. W., Marble, G., and Isaacson, J. D., Graph Coloring Algorithms, 
Graph Theory ami Computing, Ronald C. Read, editor, (Academic Press, 
New York, 1972), pp. 109-122. 

[8] Cormen, T. H., Leiserson C. E., Rivest R. L., and Stein, C., Introduction to 
Algorithms, 3rd edition. 2009. 

 

0 1 1 0 1 1 0 
1 0 0 1 1 0 1 
1 0 0 1 1 1 0 
0 1 1 0 1 0 1 
1 1 1 1 0 0 0 
1 0 1 0 0 0 1 
0 1 0 1 0 1 0 


